Denominators of Igusa Class Polynomials
نویسندگان
چکیده
— In [22], the authors proved an explicit formula for the arithmetic intersection number (CM(K).G1) on the Siegel moduli space of abelian surfaces, under some assumptions on the quartic CM field K. These intersection numbers allow one to compute the denominators of Igusa class polynomials, which has important applications to the construction of genus 2 curves for use in cryptography. One of the main tools in the proof was a previous result of the authors [21] generalizing the singular moduli formula of Gross and Zagier. The current paper combines the arguments of [21, 22] and presents a direct proof of the main arithmetic intersection formula. We focus on providing a stream-lined account of the proof such that the algorithm for implementation is clear, and we give applications and examples of the formula in corner cases. Résumé. — Dénominateurs des polynômes des classes d’Igusa. Cet article donne une demonstration directe de la formule explicite du nombre d’intersection (CM(K).G1) sur l’espace des modules de Siegel pour un corps K à multiplication complexe quartique. Cette formule permet de calculer, d’une manière effective, les denominateurs des polynômes des classes d’Igusa ce qui est utile pour construire des courbes de genre 2 pour la cryptographie Cette formule a ete demontree dans l’article [22], avec une forte dependance, dans la demonstration, d’une formule donnee dans [21] qui généeralise la formule de Gross et Zagier. Notre présentation ici est plus transparante et plus adaptée pour écrire un algorithme pour la calculer. Nous donnons aussi des exemples et des applications.
منابع مشابه
Computing Igusa Class Polynomials via the Chinese Remainder Theorem
We present a new method for computing the Igusa class polynomials of a primitive quartic CM field. For a primitive quartic CM field, K, we compute the Igusa class polynomials modulo p for certain small primes p and then use the Chinese remainder theorem and a bound on the denominators to construct the class polynomials. We also provide an algorithm for determining endomorphism rings of Jacobian...
متن کاملAn arithmetic intersection formula for denominators of Igusa class polynomials
In this paper we prove an explicit formula for the arithmetic intersection number (CM(K).G1)` on the Siegel moduli space of abelian surfaces, generalizing the work of Bruinier-Yang and Yang. These intersection numbers allow one to compute the denominators of Igusa class polynomials, which has important applications to the construction of genus 2 curves for use in cryptography. Bruinier and Yang...
متن کاملComparing Arithmetic Intersection Formulas for Denominators of Igusa Class Polynomials
Bruinier and Yang conjectured a formula for intersection numbers on an arithmetic Hilbert modular surface, and as a consequence obtained a conjectural formula for CM(K).G1 under strong assumptions on the ramification in K. Yang later proved this conjecture under slightly stronger assumptions on the ramification. In recent work, Lauter and Viray proved a different formula for CM(K).G1 for primit...
متن کاملA simplified setting for discrete logarithms in small characteristic finite fields
We present an algorithm for constructing genus 2 curves over a finite field with a given number of points on its Jacobian. This has important applications in cryptography, where groups of prime order are used as the basis for discrete-log based cryptosystems. For a quartic CM field K with primitive CM type, we compute the Igusa class polynomials modulo p for certain small primes p and then use ...
متن کاملGenus 2 Curves with Complex Multiplication
While the main goal of this paper is to give a bound on the denominators of Igusa class polynomials of genus 2 curves, our motivation is two-fold: on the one hand we are interested in applications to cryptography via the use of genus 2 curves with a prescribed number of points, and on the other hand, we are interested in construction of class invariants with a view towards explicit class field ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015